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Theoretical studies of adaptation emphasize the
importance of understanding the distribution of
fitness effects (DFE) of new mutations. We report
the isolation of 100 adaptive mutants—without the
biasing influence of natural selection—from an
ancestral genotype whose fitness in the niche occu-
pied by the derived type is extremely low. The
fitness of each derived genotype was determined
relative to a single reference type and the fitness
effects found to conform to a normal distribution.
When fitness was measured in a different environ-
ment, the rank order changed, but not the shape of
the distribution. We argue that, even with detailed
knowledge of the genetic architecture under-
pinning the adaptive types (as is the case here),
the DFEs remain unpredictable, and we discuss
the possibility that general explanations for the
shape of the DFE might not be possible in the
absence of organism-specific biological details.

Keywords: mutation; adaptation; evolution

1. INTRODUCTION
The nature of the distribution of fitness effects (DFE) is
central to understanding the process of adaptation [1,2].
Although difficulties posed by the collection of a sample
ofmutations unbiased by selection have thus far rendered
the DFE beyond experimental measure [3], the distri-
bution is likely to belong to one of the many probability
distributions that have approximately exponentially dis-
tributed right-hand tails. Accordingly, extreme value
theory (EVT) can be used to provide insight into the dis-
tribution of beneficial fitness effects (DBFE) available to
a well-adapted genotype [4–6]. Several experimental
studies support the prediction that, in some cases, the
DBFE conforms to EVT predictions, but they also high-
light the shortcomings of the theory [7–13]. For
instance, a key requirement for EVT to be applied is
that adaptation is typically in response to minimal

environmental change, such that it begins with a
genotype that has high fitness. This requirement
excludes application of EVT to the consideration of
adaptation to novel environments (as occurs during the
evolution of antibiotic resistance or during adaptive
radiations) from the current theoretical framework.

In this study, we use a novel genetic construct to
identify beneficial ‘wrinkly spreader’ (WS) mutants of
Pseudomonas fluorescens, prior to their exposure to the
biasing effects of selection. The WS phenotype confers
the ability to colonize the broth surface in oxygen-
limited static microcosms. In order to obtain a view of
the overall DFE (not just its right-hand tail), we measure
the fitness of WS genotypes in this environment, in
which the progenitor genotype has low fitness.

2. MATERIAL AND METHODS
(a) Collection of non-selected mutants
We used a reporter construct that fused a kanamycin resistance (nptII)
gene to the wss promoter [14]. Upon mutation to the beneficial WS
phenotype, transcription of wss increases so that mutants having the
Pwss–nptII fusion become kanamycin-resistant, and can be identified
without selection for the focal beneficial trait (ability to colonize the
air–liquid interface). The (non-WS) P. fluorescens ancestor containing
the WS reporter construct (SMMSC) was inoculated into glass vials
containing 6 ml of King’s Medium B (KB) and incubated at 288C
with shaking for 16 h (WS genotypes are maladapted in shaking
broth culture); 50 ml of culture was then plated on KB agar containing
15 mg ml21 kanamycin to select kanamycin-resistant clones.

(b) Fitness assays
Selection coefficients of identified beneficial mutants were calculated
as described in the electronic supplementary material. Assays were
carried out for 1 day in structured (static) and unstructured
(shaken) environments.

(c) Statistical analysis
Estimation of best-fit mutation effect distributions was done using
maximum likelihood methods implemented in R v. 2.11.0. Measure-
ment error was accounted for separately by convolution from
genotype effects. Details of this approach and comparisons of all distri-
butions fitted are presented in the electronic supplementary material.

3. RESULTS
WS genotypes—adaptive by virtue of their ability to
form a self-supporting mat at the air–liquid interface
[15]—evolve when P. fluorescens SBW25 is propagated
in static broth microcosms. A WS reporter construct
[14] was used to obtain 100WS genotypes from the pro-
genitor SMMSC strain without selection for the ability to
colonize the air–liquid interface. To ensure that no non-
WS, kanamycin-resistant mutants were included, all 100
mutants were individually checked for their ability to
colonize the air–liquid interface of broth microcosms.

Next we tested the possibility that some WS geno-
types were not detectable owing to their inability to
activate kanamycin resistance. A set of 100 independent
microcosms inoculated with SMMSC were incubated in
non-shaken liquid microcosms for 36 h; all 100 WS
obtained in this manner were kanamycin-resistant,
despite being selected only for their WS morphology.

Finally, we tested for a correlation between WS fit-
ness and the level of wss transcription. If the most (or
least) fit WS genotypes have a higher rate of wss
expression, this might affect the extent of kanamycin
resistance, raising the possibility that some WS geno-
types may grow too slowly to be detected. Of the 100
WS genotypes, 31 were randomly selected and plated
at a low dilution on kanamycin-containing agar

Electronic supplementary material is available at http://dx.doi.org/
10.1098/rsbl.2010.0547 or via http://rsbl.royalsocietypublishing.org.
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plates. The diameter of four colonies from each WS
genotype was measured and the average plotted against
the fitness as determined in a static microcosm relative
to a marked WS (see below): no correlation was
observed (Pearson’s correlation coefficient, r2 ¼
1.6 ! 1025, p ¼ 0.981).

To determine the DBFEs of the 100 non-selected
WS mutants, we assayed the fitness of each mutant
relative to a lacYZ-labelled reference WS strain in
static broth microcosms. A maximum likelihood
method (see §2) was used to fit gamma, exponential,
lognormal, skew normal and normal distributions to
the resulting data. The gamma, lognormal and expo-
nential distributions were rejected as best describing

the DBFE in favour of the normal distribution
(figure 1; electronic supplementary material,
table S1). In order to test whether the normal distri-
bution was specific to the spatially structured
environment we determined the DBFE for the same
100 genotypes in spatially unstructured (shaken)
microcosms. We found that the DBFE of these geno-
types in this alternative environment were also best
described by the normal distribution. A possible expla-
nation for this result is that the fitness of each genotype
in the structured environment is negatively or posi-
tively correlated with its fitness in the unstructured
environment. This possibility was rejected because of
the significant lack of correlation in the rank order of
genotype fitness measured in the different environ-
ments (Spearman’s rank correlation, r ¼ 20.030,
p ¼ 0.415). In light of the absence of a correlation in
fitness across environments, it is interesting that the
DFE of mutant genotypes in the shaken environment
was also best described by the normal distribution.

Although our sample of WS mutants was indepen-
dently collected, it is possible that a mutational hotspot
could bias our sample. To address this, we sequenced
20 of the 100 WS mutants at four loci known to acquire
WS-generating mutations: wspF, awsX, awsR and mwsR
[16]. We found 13 mutations; five of these were unique,
two occurred twice and one occurred three times
(table 1). This distribution did not differ from a
random expectation of mutation counts leading to a
rejection of the hypothesis that the observed distribution
was biased by mutations of a few types (Poisson
distribution goodness-of-fit, x2 ¼ 0.713, p ¼ 0.398).

4. DISCUSSION
Theoretical predictions of the DFEs of new beneficial
mutations depend on a number of assumptions. One of
these is that the wild-type is well adapted to the prevailing
conditions [3]. Such an assumption does not hold here;
our findings are therefore not a test of existing theory
[4–6]. Instead, because WS genotypes colonize a niche
largely unavailable to the ancestral type, only beneficial
mutations are viable. All deleterious or neutral mutations
remain as non-viable as the ancestor. This means that the
set of 100 WS described here are not only an unbiased
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Figure 1. The distribution of fitness effects for non-selected
WS genotypes. Curves are fitted using parameters that best
fit the data for fitness measurements obtained in the (a)
static and (b) shaken broth environments. Lines show best-
fit distributions as determined by maximum likelihood as fol-
lows: black solid, normal; red dot dashed, lognormal; blue
dashed, gamma; and green dots, exponential. The normal
distribution provides a marginally better fit to the data.
(c) The measurements taken for genotypes in the static and
shaken environments show no correlation.

Table 1. Mutations identified by sequencing WS genotypes
isolated from microcosms 1–20 of the 100 WS mutants
used in this study (13 mutations were found).

nucleotide change gene

C608A wspF
D3066-3074 mwsR
D228-261 awsX
D3068-3076 mwsR
D3066-3074 mwsR
D228-261 awsX
D99-138 awsX
C160G awsR
D140-185 awsX
D228-261 awsX
D155-173 awsX
D99-138 awsX
D99-138 awsX
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sample of beneficial mutations, but also provide an
empirical glimpse of the shape of the overall DFE.

The need for theory applicable to situations where
new beneficial mutations arise from a maladapted
ancestral type is clear; but even in the absence of
theory our detailed understanding of the genotype-
to-phenotype map underpinning the evolution of
WS genotypes ought to be sufficient to attempt an
explanation for the observed normal distribution.

All known WS genotypes arise owing to overactiva-
tion of di-guanylate cyclases (DGCs) [16–20]. Despite
the fact that the genome contains 39 DGCs [21], all
single-step WS genotypes arise as a consequence of
mutations in just three DGC-containing loci (Wsp,
Aws and Mws), and most are contained in one of
three genes (wspF, awsX or mwsR). Just why three out
of many potential pathways are trodden by evolution
is described in detail elsewhere [16], but this fact
alone draws attention to a bias in the spectrum of
WS variants delivered to selection. The very existence
of such a bias suggests that the shape of the DBFE will
be influenced by the genetic architecture underlying the
trait(s) of interest; however, just why the realized DBFE
should conform to a normal distribution is not clear.
One possibility is that this distribution reflects the gen-
etic architecture underpinning WS evolution.

Our finding that the shape of the DBFE is normal
in both spatially structured and unstructured environ-
ments is curious. Two other studies have measured
the fitness effects of bacterial genotypes collected
while minimizing selection bias [9,10]. Both found
that the fitness of all genotypes was approximately
normally distributed when measured in an environ-
ment in which the ancestor had a fitness of zero.
Although larger datasets covering a wider range of
organisms are required, these observations hint at
generalities for the DFE over different organisms
and traits. This would open up the possibility for a
more general model of adaptive walks than is
currently available.
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